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We addressed BioCreAtIvE Task 2, the problem of annotation of a protein with a node in the 
Gene Ontology (GO). We approached the task as a problem of categorizing terms derived from 
the document neighborhood of the given protein in the given document into nodes in the GO 
based on the lexical overlaps with terms on GO nodes and terms identified as related to those 
nodes. The system incorporates NLP components such as a morphological normalizer, a named 
entity recognizer, a statistical term frequency analyzer, and an unsupervised method for 
expanding words associated with GO ids based on a probability measure that captures word 
proximity (Rocha, 2002). The categorization methodology uses our novel Gene Ontology 
Categorizer (GOC) methodology (Joslyn et al. 2004) to select GO nodes as cluster heads for the 
terms in the input set based on the structure of the GO. 

Pre-processing 

Swiss-Prot and TrEMBL IDs were provided as input identifiers for the protein, so we needed to 
establish a set of names by which that protein could be referenced in the text. We made use of 
both the gene name and protein names that are in Swiss-Prot itself, when available, and a 
collection of synonyms constructed by Procter & Gamble Company. The fallback case was to use 
the name filled in from the EBI TrEMBL human data1. The resulting database tables were used to 
construct a list which was dynamically loaded from the database into a GATE (Cunningham et al. 
2002) gazetteer processing module (which in turn compiles it into a finite state recognizer). 

Additional pre-processing was performed on the document corpus. First, the original SGML 
documents were parsed to extract the Title, Abstract, and Body components, to normalize SGML 
character entities to corresponding ASCII characters (for instance, converting “&prime;” to an 
apostrophe), and to remove all formatting tags apart from the paragraph markers. Subsequently, 
we morphologically normalized the documents using a tool called “BioMorpher”2. We performed 
frequency analysis on the resulting terms, and selected representative terms for each document 
using a TFIDF filter (term frequency inverse document frequency, Witten et al 1994). 

Unsupervised Methodology for Expanding Words Associated with GO ids 

The (protein, document, GO id) triples provided for training purposes, as well as those given for 
the evaluation of Task 2.1, were used to determine sets of words related to GO ids following a 
methodology developed for the Active Recommendation Project3 at Los Alamos (Rocha and 
Bollen, 2001). After document pre-processing, we divided each document into paragraphs and 
calculated for each document a matrix of word occurrence in the paragraphs: R: P×W, where P is 
the set of all m paragraphs in a document, and W is the set of all n words. This is a Boolean 
matrix (ri,j ∈ {0, 1}) that specifies if a given word occurred at least once in a given paragraph.  

From the R matrices, we calculated a word in paragraph proximity 
matrix, WPP, for each document, using the co-occurrence probability 
measure shown at right, as defined in Rocha (2002). WPP denotes the 
association strength between pairs of words (wi, wj) , based on how 
often they co-occur in the paragraphs of a given document. A value of 
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1 A script was applied to the TrEMBL names that generated variants of strings containing mismatched punctuation and 
parentheticals such as “(precursor)” or “(fragment)” which were felt not to be likely to occur directly in the text. 
2 BioMorpher is a morphological analysis tool built on the Morph tool originally developed at the University of Sheffield by 
Kevin Humphreys and Hamish Cunningham for general English, extended to include large exception lists for biological 
text as well as to handle some morphological patterns not handled by the original tool. 
3 http://arp.lanl.gov  
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wpp (wi, wj) = 0.3, means that words wi and wj 
co-occur in the same paragraphs 30% of the 
time that either one of them occurs. To avoid 
artificially high values of WPP, we computed this 
value only if the total number of paragraphs in 
which either of the words occurs (the 
denominator of the formula) is at least 3. 

From the GO ids in the provided triples we 
retrieved the words from the GO node label. Let 
us refer to this set of words as WGO. For each 
document, we then retrieved a set of words 
highly associated in WPP with the words in WGO. 
Specifically, we returned the top 5 to 10 
additional words with highest average value of 
WPP to all words in WGO. The additional words 
thus discovered were used to expand WGO. Let 
us refer to the expanded set of words as 
WGOPRox; the additional words are not found in 
the respective GO node label, but co-occur 
highly in a given document with those words.  

In Run 1 submitted for Task 2.1 (see below), 
which yielded arguably the best result of any 
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igure 1: System Architectur
submission for this task, for each (GOid, 
t) pair we used its respective matrix R and set WGOPRox to recommend paragraphs as 
 text for the GOid. This was done using a vector intersection operation. The columns of 
tors of words occurring in a paragraph. We choose as evidence text for the GO id the 

hs associated with the columns of R that yield the largest intersection with WGOPRox. That 
aphs containing the largest number of words also found in WGOPRox  are selected. 

peration 

itecture of the system is shown in Figure 1. The system is built around a technology 
e Gene Ontology Categorizer (GOC, Joslyn et al. 2003, 2004), which utilizes the 
of the Gene Ontology to find the best covering nodes given a set of node “hits”. GOC 
udo-distances between comparable nodes to score each node with respect to a given 
lancing coverage – covering as many inputs as possible – and specificity – covering 
the “lowest level” in the GO as possible.  

 originally designed (Joslyn et al. 2004) to take as a query a list of gene products, which 
mapped to the set of GO nodes to whch they are annotated. For BioCreAtIvE Task 2, 
 extended first to accept weighted query items, and additionally extended to take terms, 
 then again mapped to the set of GO nodes in which the terms appear, as query items.  

re collected through analysis of the sentential context of the given protein, 
gically normalized, and weighted using a normalized TFIDF value derived during pre-
g. Weights represent the contentfulness of each term. Internally, GOC looks for lexical 
between the input term set and (morphologically normalized) terms associated with each 
 node in the GO. A match between an input term and a term associated with a GO node 
 a “hit” on that node, with the strength of a hit determined by the weight of the term. 

e associated with GO nodes via one of three mechanisms:  
irect: The term occurs in the node label of GO node 
efinitional: The term occurs in the definition text associated with GO node 
roximity: Additional terms are identified as closely related to each GO node following 
e Proximity GO id Word Expansion as described above (Rocha 2002). 
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Direct and indirect associations are counted as distinct “hits” on a node and can be weighted 
differently. After transforming the input query into a set of node hits, GOC traverses the structure 
of the Gene Ontology, percolating hits upwards, and calculating scores for each GO node (see 
Joslyn et al 2003, 2004). GOC returns a set of GO nodes representing “cluster heads”4 for the 
weighted term input set, as well as data on which of the input terms contributed to the selection of 
each cluster head. This information is used to select the evidence text for the GO assignment 
associated with the cluster head. To address this, we again bring in proximity measurement – in 
this case, the proximity of terms to individual paragraphs in the document. The set of terms which 
contributes to an annotation is judged to be close to one or more paragraphs in the document, 
and finally the closest match is selected as the evidence. 

Evaluation Results 

We submitted 3 runs for each of tasks 2.1 and 2.2 (as well as a run for task 2.3 which was not 
scored). The results for the two runs are shown in Figure 2. One of the runs we submitted for task 
2.1 had arguably the best result of any submission. This run (user 7, run 1) utilized a 
configuration of our system which bypassed GOC, utilizing only the Proximity GOid Word 
Expansion followed by vector intersection of the columns of R and the expanded set of words 
associated with a GOid, WGOPRox, to discover paragraphs. We achieved a score of either perfect or 
generally good for 413 of the results; this corresponds to a good result for 38% of the 1076 
queries, and the highest combined score (the next closest was user 14 with 357). Focusing just 
on perfect results, our result of 263 was in the top echelon. In this configuration, we ignored the 
protein altogether and focused on the GO node-paragraph relationship. Nonetheless, we received 
a score of “high” on the protein mention measurement for 638 of the 1050 (61%) answers we 
submitted. This result reflects a high coherence between the GO nodes and the given target 
proteins in the given documents, at least at the level of paragraphs. 

Our results for the other runs we submitted for Task 2.1 were less good, achieving a perfect or 

User, 
Run 

# 
results “perfect” “generally” 

4, 1 1048 268 (25.57%) 74 (7.06%) 

5, 1 1053 166 (15.76%) 77 (7.31%) 

5, 2 1050 166 (15.81%) 90 (8.57%) 

5, 3 1050 154 (14.67%) 86 (8.19%) 

7, 1 1050 263 (25.05%) 150 (14.29%) 

7, 2 1856 43 (2.32%) 40 (2.16%) 

7, 3 1698 59 (3.47%) 27 (1.59%) 

9, 1 251 125 (49.80%) 13 (5.18%) 

9, 2 70 33 (47.14%) 5 (7.14%) 

9, 3 89 41 (46.07%) 7 (7.87%) 

10, 1 45 36 (80.00%) 3 (6.67%) 

10, 2 59 45 (76.27%) 2 (3.39%) 

10, 3 64 50 (78.12%) 4 (6.25%) 

14, 1 1050 303 (28.86%) 69 (6.57%) 

15, 1 524 59 (11.26%) 28 (5.34%) 

15, 2 998 125 (12.53%) 69 (6.91%) 

17, 1 412 0 (0.00%) 1 (0.24%) 

17, 2 458 1 (0.22%) 0 (0.00%) 

20, 1 1048 300 (28.63%) 57 (5.44%) 

20, 2 1050 280 (26.72%) 60 (5.73%) 

20, 3 1050 239 (22.76%) 59 (5.62%) 

User, 
Run 

# 
results 

“perfect” “generally” 

4, 1 661 78 (11.80%)  49 (7.41%) 

7, 1 153 1 (0.65%) 1 (0.65%) 

7, 2 124 1 (0.81%) 1 (0.81%) 

7, 3 263 2 (0.76%) 10 (3.80%) 

9, 1 28 9 (32.14%) 3 (10.71%) 

9, 2 41 14 (34.15%) 1 (2.44%) 

9, 3 41 14 (34.15%) 1 (2.44%) 

10, 1 120 35 (29.17%) 8 (6.67%) 

10, 2 86 24 (27.91%) 6 (6.98%) 

10, 3 116 37 (31.90%) 11 (9.48%) 

15, 1 502 3 (0.60%) 8 (1.59%) 

15, 2 485 16 (3.30%) 26 (5.36%) 

17, 1 94 1 (1.06%) 0 (0.00%) 

17, 2 55 1 (1.82%) 0 (0.00%) 

17, 3 99 1 (1.01%) 1 (1.01%) 

20, 1 673 20 (2.97%) 30 (4.46%) 

20, 2 672 38 (5.65%) 26 (3.87%) 

20, 3 673 58 (8.62%) 27 (4.01%) 

 

Figure 2: Results of system runs. The table to the left 
contains the results for Task 2.1; the table to the right 
contains results for Task 2.2. We were User 7. 

                                                 
4 Note that we are not using “cluster” here in the sense of traditional clustering, e.g. k-means (Joslyn et al. 2003, 2004). 

3 



generally good score for 83/86 (runs 2/3, respectively) of the queries, or about 8%. These two 
runs used the full architecture as shown in Figure 1; run 2 used a very basic sentence text 
selection algorithm, in which the sentence containing the most number of terms from the set of 
input terms  while run 3 used the proximity-based paragraph selection algorithm. 

Our Task 2.2 results were poor, at the bottom of the sets of runs along with user 17.  However, 
we have been informed of a problem with the evaluation of our Task 2.2 results, and it is as yet 
unclear what the impact of that problem is. 

Results Discussion 

There are several important general issues in the evaluation that impacted our performance. 

Unknown proteins: The strategy that we follow for identifying the “context window” of a protein 
(in runs other than Task 2.1, Run 1) depends on recognizing references to the protein in the text. 
We depend on a list of known names associated with the protein IDs to pick out sentences or 
paragraphs of particular relevance to the protein. We chose this strategy as it was straightforward 
to implement, and because the problem of protein reference identification was being addressed in 
Task 1 and we felt the focus in Task 2 would be on the GO annotation tasks. The training data for 
Task 2 bore this out – a large majority (about 70%) of the queries contained proteins that were 
known to us. However, we discovered that the test data contained many protein IDs that were not 
yet available in SwissProt; we assume that these are recently identified proteins. Only 58 of the 
286 (20%) proteins referenced in all subtasks of Task 2 were in our database of known proteins; 
29/138 (21%) for Task 2.1 and 19/138 (14%) for Task 2.2. The statistics for the impact this had 
on the queries was even worse: only 153/1076 (14%) of the queries in Task 2.1 and 44/435 
(10%) of the Task 2.2 queries included proteins for which we had names. We were able to fall 
back to the names in the TrEMBL database, but these are of poor quality and usually there is only 
one name, not a full set of synonyms for a protein. This issue had a huge impact on our ability to 
focus in on text within documents that was directly relevant to the protein of interest and 
effectively placed a very low upper bound on our evidence text selection scores. 

Assessment criteria: The methodology followed by the evaluators of Task 2.2 focused on the 
evidence text, measuring whether the selected evidence text for a given query mentioned both 
the protein of interest, and the function/process/component indicated by the target GO node. The 
GO node prediction was not evaluated independently of the evidence text. Our interpretation of 
the task was that there were two results, prediction of the GO node and selection of the exidence 
text. Our understanding is that the primary task of an annotator is to correctly annotate a protein; 
in fact the GO and other biological knowledge repositories rarely reference anything more specific 
than a Pubmed ID as evidence for an annotation. Hence we considered the two results 
separately and focused our energy more on the GO node annotation component. Our analysis of 
our results strictly for annotation prediction (Table 1) shows that we achieved an F-score of 0.24 
for runs 1 and 2 (these results are identical as expected since the runs only varied with respect to 
the evidence text selected) and 0.29 for run 3, across all desired answers. The scores were 
calculated in terms of direct hits, i.e. queries for which we returned exactly the GO node that was 
desired, and indirect hits, or queries for which we returned a node which was either a sibling, 
aunt, cousin, ancestor, or descendent of the desired answer. 

There were also some issues specific to our algorithms that led to poor results. 

Discussion, GOC-based runs: 
Due to the “unknown proteins” problem described above, we were unable to focus on a context 
window around the protein of interest, and the “protein neighborhood” terms input to GOC were in 
most instances the top TFIDF-ranked terms for the document as a whole, rather than coming 

Run 
Precision, 

Direct 
Precision, 

Indirect 
Precision, 

Total 
Recall, 
Direct 

Recall, 
Indirect 

Recall, 
Total 

F-score, 
Total 

Run 1 0.061 0.185 0.246 0.059 0.181 0.241 0.243112 

Run 2 0.061 0.185 0.246 0.059 0.181 0.241 0.243112 

Run 3 0.057 0.228 0.285 0.059 0.238 0.298 0.291323 
Table 1: Assessment of Precision/Recall over the GO annotation prediction component of Task 2.2. 
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from a coherent textual neighborhood around the protein. This had several implications. First, 
GOC may have been “overseeded” – since the input terms were derived from across the 
document, they may have matched very dispersed nodes in the GO. This would make it difficult 
for the GOC algorithm to confidently select a covering node for the input terms. Second, evidence 
text selection on the basis of overlap with or proximity to terms from across the document is 
difficult; it is unlikely that any single sentence/paragraph matches more than a few of these terms. 

The overseeding may have led to an additional difficulty. The number of terms from the GOC 
input set used to rank a GO node was very small – normally 1-3 terms – and only this subset of 
terms was passed on to the two evidence selection algorithms. The motivation underlying this 
approach was to enable the evidence text selection for a GO annotation to proceed on the basis 
of only those document terms relevant to that annotation. In practice, given the small and weakly 
coherent sets of terms that were generated, this created great difficulty for reliably selecting a 
contiguous chunk of text focused on that GO node. This problem may have ameliorated by 
incorporating the strategy from Task 2.1, Run 1, utilizing all available information about the 
selected GO node, rather than limiting ourselves to terms from the context window. 

Finally, we would like to explore the interaction between TFIDF weights and the importance of a 
term in the GO. Preliminary analysis suggests that there are very frequent terms in the GO with 
relatively high TFIDF scores in the corpus; this would unfairly value those terms in GOC and 
exacerbate the overseeding problem. Some adjustment of the weighting scheme to better take 
into consideration the terminological structure of the GO is perhaps warranted. 

Discussion, Proximity-based Word Expansion and Evidence Text selection: 
While the proximity-based word expansion proved to be a very useful technique, responsible for 
arguably the best run of the entire competition for task 2.1, the evaluator comments indicated that 
they were often unhappy with paragraphs as the basic unit for evidence text. To address this, we 
envision several changes. We could apply the proximity measurements at the sentence level, 
rather than the word level; we could explore metrics for recognizing excessively long paragraphs 
and splitting them at positions of subtle topic change; or we could try to use more linguistic 
(structural) analysis to focus in on the core information expressed and narrow the text returned. 

There are some additional ways to build on our results. We could calculate a global word 
proximity matrix, rather than one matrix per document, which should strengthen our confidence in 
the relationships between words, as well as relating any given word to more words due to 
consideration of its occurrence across the document corpus. We could also incorporate semi-
metric analysis of the word proximities (Rocha 2002) to find additional related words, even if they 
do not co-occur in the corpus.  
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